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In this class we looked at a not widely-known application of D&C:  determining 

if a tree contains a path of length k or more.  (Note: the length of a path is the 

number of edges in the path.)

First, let us consider the more general problem: given a graph G and an integer 

k, does G contain a path of length k?  We can call this the k-path problem.

This is the generalized version of a well-known NP-Complete problem: the 

Hamiltonian Path Problem, which simply asks the question “Does graph G 

contain a path that includes every vertex of G?” Since this problem easily 

reduces to k-path (exercise: work out this extremely simple reduction), we 

conclude that there is almost certainly no polynomial-time algorithm for k-path.

However the story changes when we restrict the question to trees.

Definition:  A tree is a connected graph with no cycles.  The practical 

implication of this is that for any pair of vertices in a tree, there is exactly one 

path of edges that joins them.

In a tree, some vertices are joined by short paths and some by longer paths.  If 

the tree represents a message passing network, the length of the longest path is 

of interest as it gives some kind of measure of the maximum delay for a message

to travel from its source to its destination.  If there is a path of length k, some 

messages will take k steps to get from source to destination.

Determining the existence of a path of length k (or more) is not difficult.  In fact 

we will develop algorithms that solve a more general (and more useful) 

problem:  given a tree T, what is the length of the longest path in T?  

A simple Breadth-First Search or Depth-First Search algorithm can be used n 

times, each time starting at a different vertex and computing the lengths of the 

paths from that vertex to all others in O(n) time (this algorithm has a higher 

complexity on graphs that are not trees).  Since in a tree there is exactly one path



between each pair of vertices, we don't have to consider alternative paths 

between two vertices when looking for the longest path: the length of the 

longest path is simply the maximum distance between any two vertices of the 

tree.  Finding the distances from each vertex to all the others, and keeping track 

of the longest distance, gives a simple O( ) algorithm for  finding the longest 

path in the tree: apply an O(n) search algorithm n times.

But we can do better!   Not surprisingly, given the theme of this unit, we will use

a Divide and Conquer approach.

Suppose we have a tree T.  Choose an arbitrary vertex x as the root of T - we can 

visualize grabbing vertex x and pulling it upwards, so that the rest of the tree 

"hangs down" from x.  Let , , ... represent the subtrees that hang from x.

Now we can make an observation about the longest path in T.  It may seem a bit 

obvious but it is very useful:

    Either the longest path in T goes through vertex x ...

            ... or it doesn't  !

Trivial as it may seem, this observation motivates our algorithm.  Because if the 

longest path in T doesn't go through x, then it (the path) must be completely 

contained in one of the  subtrees ... and we can find the longest path in each 

subtree recursively (see how craftily Divide and Conquer creeps in).

However, it is entirely possible that the longest path in T does go through x 

(remember, we chose x arbitrarily).  In this case, the longest path must "come up

out of" some , pass through x, then go "down into" some other .  And since 

this path is the longest possible path in T, we must be using the longest path that

goes from the bottom to the top of , and the longest path that goes from the 

bottom to the top of  - and in fact, we must be using the longest and second 

longest of the available “bottom to top” paths in the subtrees.

So for each , we need the length of the longest path that is completely 



contained in , and we also need the length of the longest path that goes from 

the bottom of  to the top of .  From this information, we can compute the 

length of the longest path in T.

The following algorithm is fully recursive.  Given a tree T and the root vertex of 

T, it computes and returns the two values just described.   I’m using sligthly 

different notation than I used in class, but the logic is identical (and more 

detailed here):

Max_Tree_Path(T, x)    # x is the root of T (T may be a subtree of the 
  # original tree)

# We compute two values for T:
#         LP : the length of the longest path in T
#         BT : the longest path in T with one end at the bottom of T 
# and the other end at x (BT stands for “bottom to top”)
# This algorithm will return both of these values - if implemented in 
# a language that permits only single value returns, an object 
# containing both of these paths must be constructed and returned.

# base case
if T consists of just the vertex x:

LP = 0 # the longest path in T contains 0 edges
BT = 0 # the longest path from the bottom to the top of T 

#  contains 0 edges
else:

Let  be the subtrees that are attached to x, each 
rooted at the vertex  that connects directly to x

max_subtree_LP = 0
max_subtree_BT = -1 # Exercise: why do these start at -1
second_max_subtree_BT = -1
for i = 1, 2, ... k

L, B = Max_Tree_Path( )        
# this recursive call returns the LP and BT values for
# subtree 

if L > max_subtree_LP:
max_subtree_LP = L

if B > max_subtree_BT:
second_max_subtree_BT = max_subtree_BT
max_subtree_BT = B

elsif B > second_max_subtree_BT:
second_max_subtree_BT = B

# now we have all the information we need to compute LP and BT
BT = max_subtree_BT + 1
LP = max( BT, max_subtree_LP, max_subtree_BT +

   second_max_subtree_BT + 2 )

return LP, BT



This algorithm has some interesting points.  In most D&C algorithms we know 

exactly what information we need from each subproblem.  In this algorithm we 

don't know whether the LP or the BT values from the subtrees will be most 

useful to find the overall solution, so we compute both of them for each subtree. 

The complexity of the algorithm may look difficult to compute.  We can define 

MTP(T) to be the time required for Max_Tree_Path to run on a tree T, and the 

recurrence relation would look something like this:

        MTP(T) = c + MTP( ) + MTP( ) + ... MTP( )               where   are 

the subtrees.  This is hard to analyze because we can't predict the sizes of the 

subtrees.

However, if we think of the "execution tree" of the recursive calls made by the 

algorithm, we see that every single vertex of the tree gets to be the root of a 

subtree exactly once during the execution of the algorithm.

So the number of calls to the function is exactly equal to the number of vertices, 

and the work related to each recursive call is constant (just a few comparisons 

and additions).  This shows that the complexity is O( ).

We can also think of this as a process of passing information along the edges of 

the graph.  Each time we finish a recursive call, two values get passed up the 

edge from the root of the subtree to its parent.  So each edge contributes a 

constant amount to the total work that is done, and since there are n-1 edges, the

total amount of work is O( ).

Thus the algorithm runs in O( ) time - a full order of magnitude faster than the 

O( ) algorithm that we started with.  If we are dealing with a very large tree, 

that's a big advantage.



This style of analysis: stepping away from the line-by-line analysis of the 

algorithm and focusing on the the total amount of work associated with each 

part of the structure being processed (in this case, a tree) is a very powerful tool.

The existence of such a fast algorithm for solving on trees a problem which is 

known to be NP-Complete on general graphs leads to an obvious but profound 

question:  does it only work on trees, or can we use the same technique on 

other types of graphs?  For example, what if we add one edge to a tree - can we 

still solve the longest-path problem in polynomial time?  (The answer is Yes - try

to figure out how to do it.)  It turns out that there are many families of graphs 

for which this and other NP-Complete problems can be solved in polynomial 

time.  These results are beyond the scope of this course but they are not difficult 

to understand.  For more information search for "k-terminal recursive graphs" 

and in particular, papers by Steve Hedetniemi and Tom Wimer.  (For example, 

here is the link to Tom Wimer’s PhD thesis: https://dl.acm.org/citation.cfm?

id=913798  )
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